LARGE AMPLITUDE VIBRATION OF BUCKLED BEAMS
AND RECTANGULAR PLATES

J. GG. Eisley*
The Univers:ty of Michigan, Ann Arbor, Michigan

Nomenclature
a, b, h = plate width, length, and thickness, {x, y, z directions)
respectively

T = a/b, plate aspect ratio
t = time
4, v, w = displacements in the x, y, z directions, respectively
D = plate flexural rigidity, Eh?/12(1-v?)
EI =  beam flexural rigidity
F = stress function
P = mass density ) -

= Poisson's ratio
Other symbals are defined in the text.
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Introduction

In recent vears a number of investigations of the large

I-%4 4nd flat rectangular plates? ™8 have

—

amplitudé vibration of beams
been reported in which the ends of the bearms and the edgés of the
plates have been assumed to remain a fixed distance apart during
vibration. In particular BurgreenZ has considered the free vibration
of a simply supported beam which has been given an initial enc
displacement and the author8 has considered free and forced vibration
of simply supported and clamped beams and rectanguiar plates for
which initial end and edge displacements have been prescribed. In
both reports a one degree of freedom representation of the equations
of motion is used. Results are obtained for edge displacements in the
postbuckling as well as the prebuckling region. ' In the case of forced
motion, however, the results were restricted to symmetrical motion
about the flat position of the beam or plate. For the buckiea heam or
plate it is also possible to have vibration about the static buckied
position. This has been discussed for free vibration in the above
reports and it is the purpose of the following remarks to extend the

discussion to a case of forced motion.

Equations of Motion

Tre differential equation of motion for a beam of unit width
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where v_ represents an initial axial displacement measured from the
o

N 4 .
unstressed state. For a plate the dynamic von Karmdn equations are
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are the membrane stresses. When a single mode is assumed and
Galerkin's method is applied, the problem reduces to the solution of a

single ordinary differential equation in time.

(2)

In the case of a simply supported beam, for example, we assume

w(y,t) = b g (t) sin“—b!-

and obtain the following equation in nondimensional form

&, _+pg+ag’ =f(n)
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where
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The parameter \ is a measure of the initial axial displacement and is

defined
v
o
A =
Vo -
cr
where Vo s the axial displacement which produces the buckling load.

cr

Thus X > 1 refers to the postbuckling region. An equation of the same

form is obtained for other beam boundary conditions and for plates as

(3)
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well, The coeffictents p and ¢ for simply supported and clamped
beams and rectangular plates are given in Ref, 8. The remarks
which follow apply to these cases as well as others which may he
defined.
To study the motion about the étatic buckled position 1t is

convenient to change to the variable

6 = £ - &, {(6)
where §, is the static buckle amph'iude and 6 is the variation from that
position. If Eq. (6} is substituted into Eq. (4) it follows that for

harmonic forcing

& + wib+c, 62438 =fcoswT } (7}
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where
W = 2
u)o pt+ 3q€1
c; = 3q§l
€3 =49

Note that w 1s the linear vibration frequency about the buckled position.
The problem of small amplitude vibration of a buckled plate has been
more fully discussed eisewhere. 9-10
This equation is of similar form to an equation derivec for
the vibrafion cf initially curved plates and shells, 11-13 The Linstedt-

’
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Dufiing perturbation technique used in two of the above reports

may be applied here. Let
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where the initial conditions on Eq. (7) are taken to be
5(0) = a 5, .(0)=0 (9)
{rom which it follows
5,(0y =1 , 60(0)-—-62(0): 65(0)=... =0 {10)
It is convenient to introduce the forcing function as foliows,

let f=fh=HL =0 (11)

so that

f =a®T; (12)
Then it follows that when Egs. {8) are substituted into Eq. {7) and terms
are collected according to the power of a a series of equations are

obtained. The first is
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a : 5, + w6 + ;8% +c38 =0 (13)
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which has as its solution, in view of Egs. (10)
5, (1 =0 (14)

and next

al 5, +w?é =0 (15)
TT

which has as its solution
5,(7) = coswT (16}

Continuing, we cbtain
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To insure a periodic solution it is necessary that
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thus the solution to Eq. (17) becomes

62(1):—552-(-3+2cosw~r + cos2wT) (19)
6w
Finally
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Once again, to insure a periodic solution, it is necessary that

m{=-§f—%+-3—_§1-f, (21)
which, from Eqgs. (8) and (12),may be written

2 . z Z(E.S}. 5 9.35'_ E..) (22)
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It is worth noting that the Ritz-Galerkin and related methods
as they are commonly applied are inadequate for obtaining an approxi-
mate solution to Eq. (7). It is common practice to use the sclution of
the corresponding linear equation as an assumed solution of the non-
linear equation. The frequency-amplitude relation is obtained by

: means of a certain time integration over a cycle of the motion which
minimizes the error introduced by this assumpiion. Unfortunately
the restriction imposed by the assumed solution is such that all
contributions of the term czéz are lost in the integration regardless
of its actual influence, If, however, more care is used in the selection
of an assumed function, this difficulty may be overcome.

In our case let
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and preceed with the Ritz-Calerkin method as described, for example,
ir. Ref., 14, We then obtain four algebraic equation in the four unknowns
2

w?, A, B, and C but because of the complexity of the equations no general

algebraic solution is possible. If, in addition,we let

G- Wt +au,2+a?‘mf+...
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and solve the resulting equations we arrive at the identical {requency-

amplitude relation given by Eg. {22}

Free Vibration

he relation for free vibration may be obtained by s.tting
f=01in Za. {22). An exact solution for free vibration is also possible

in this case in terms of ellipt:c functions., It is

(1) = (a+p)dn(T7, k) - p (25)
where
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The initizl conditions are
50) = « -5, (0y=10 (26}
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where o is positive and subject to the condition

*This was pointed out to me by Professor E. F. Masur,
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Physically this restricts consideration to motion about the buckled

position on one side of the flat position. The period of the mmotion is

given by the elliptic integral

'1TT/2 .
s 2 T . (28)
) o | - ke sin? ¢

Yo
It should be noted that Eq. {25) is not a general soluticn to
Eq. (7) for arbitrary values of the cocfficients °, c;, and c, but only
o
for {ree mouion when the relation
9w’ cy -2c¢f =0 (29)
o

holds. This condition is satisfied in this case because Zg, {7} was

obtained from Eq. (4). An exact solution in terms of ellipiic functions

is still possible, however, as described in Ref. 12, for example,

Numerical Results

Numerical results have been obtained from Eqse. (22) and (28)

and

(W al

for the special case of 2 buckled beam with A = 2 and Y = 0. G0
are presented in Fig. | for {rce motion. In this figure the amplitude
is given in terms of the number of beam thicknesses and the frequency
in terras of the square of the ratio of the nonlinear to the linear fre-
quency Since for the exact solution the motion is not symmetrical

-

tie undeflected position the curve for a negative initial conditicn

i
o
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»
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ciffers {rom that for a posiiive initial condition. A typical deflection
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curve for a cycle of the motion 1s shown in the lower righnt of the

igure.

. . LN
The negative implitude @ is related to « by

lf - -
5 - - (30)
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In Fig. £ the dvramic response of the same Leam to harrnoni

forcing is shown as obtained from Egq. (22).
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Freevibration,

Forced vibration,
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